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Abstract—An upper limb stroke rehabilitation system is de-
veloped which combines electrical stimulation with mechanical
arm support, to assist patients performing 3D reaching tasks
in a virtual reality environment. The Stimulation Assistance
through Iterative Learning (SAIL) platform applies electrical
stimulation to two muscles in the arm using model-based con-
trol schemes which learn from previous trials of the task. This
results in accurate movement which maximises the therapeutic
effect of treatment. The principal components of the system
are described and experimental results confirm its efficacy for
clinical use in upper limb stroke rehabilitation.
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I. INTRODUCTION

Stroke is the third largest cause of death and largest cause

of adult disability in the UK. Of the 15 million people who

annually suffer a stroke worldwide, 5 million are left perma-

nently disabled. Conventional therapy to improve upper limb

function following stroke is not effective, and only 5% of

people who survive a stroke but have severe paralysis regain

upper limb function [1]. No conventional therapy is better

than another, but intensity has been shown to be important.

During the last decade there has been growing evidence

for the effectiveness of technologies including rehabilitation

robots [2] and electrical stimulation to reduce impairment

post-stroke.

Functional electrical stimulation (FES) is a promising

method of driving neuroplastic cortical changes to enable

recovery, and is motivated by a growing body of clinical

evidence [3], and theoretical support from neurophysiology

[4] and motor learning research [5]. Evidence shows that

its therapeutic benefit is maximized when it is applied

co-incidently with a patient’s own voluntary intention [6],

motivating the precise application of stimulation to accu-

rately assist the completion of tasks. Unfortunately, most of

the openloop and triggered FES control schemes employed

clinically are insufficiently accurate to fully exploit this

association. Although a variety of model-based FES control

techniques have been applied for both the lower and upper

limbs, few have transferred to clinical practice [7]. One

exception is Iterative Learning Control (ILC), a technique

more commonly used in robotics, which uses data recorded

over previous executions of a task to improve tracking

performance on the next attempt. Recently ILC has been

used to assist patient’s completion of a repeated 2D planar

reaching task using a robotic workstation [8], leading to

statistically significant results across a range of outcome

measures during a clinical trial with 5 stroke patients [9].

Through use of multivariable nonlinear ILC, the system

developed in this paper extends the scope of treatment to

unconstrained movement using FES applied to multiple mus-

cles. This involves substantial extensions to the underlying

dynamic model of the system, and to the ILC schemes used

to provide the precise tracking control required. This system

is termed SAIL: Stimulation Assistance through Iterative

Learning [10], and uses a mechanical platform to support the

patient’s arm, reflecting the growing interest in combining

rehabilitation robots with FES to augment the benefit of each

approach and extend the impairment range treated [11]. The

FES controllers and other system components developed in

this paper can be applied to a wide variety of passive or

robotic support system, and hence provide scope for future

migration directly into patients’ homes.

II. SYSTEM OVERVIEW

The tasks designed for the patient in the rehabilitation

process involve tracking a moving object along a preset

trajectory using their impaired arm. When providing FES

during upper limb reaching movements, stimulation must

be applied within a controlled environment to ensure safety

and comfort across a broad spectrum of patient ability.

Therefore a commercially available mechanical exoskeleton

support structure has been selected. The system employed is

a purely passive ‘unweighing’ device which provides support

to overcome gravity via two springs incorporated in the

mechanism, allowing patients to focus practice on specific

impaired muscles during reaching. To assist the patient’s arm

in tracking the moving sphere, the controller reads position

information from the mechanical support and generates FES

control signals. Figure 1 shows a patient’s arm supported by

the mechanical device and Figure 2 shows the patient trying

to track a reaching trajectory during a training session.

The principal system components are now described.

Fig. 1. Stroke patient using SAIL system: mechanical support device.
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Fig. 2. Patient using SAIL system: tracking task.

A. Mechanical Support

ArmeoSpring® (Hocoma AG, Zurich) is a commercial

upper extremity therapy system combining passive arm

support with a virtual reality (VR) environment to deliver

intensive task-orientated exercise. The device also provides

reliable measurement of the human arm position using a

resolver at each joint which is aligned in either the horizontal

or vertical plane. The diverse range of VR tasks supplied

with the system are not suitable for controller evaluation,

and hence a custom task display system has been developed.

B. FES Module

Surface electrodes are attached to the patient’s anterior

deltoid and triceps muscles in accordance with clinical

guidelines. The control hardware produces a series of 5V

amplitude, 40Hz pulses with the required pulsewidth for

each stimulation channel. Each is then optically isolated and

fed to the amplification stage of a battery powered commer-

cial stimulator to result in the desired bi-phasic characteristic

and voltage amplitude. The amplification level used for each

channel is set prior to each treatment session by applying

a stimulation signal with pulsewidth 300μs, and slowly

increasing the voltage until the maximum comfortable level

is reached.

C. System Software

Unlike the 2D case which used a ‘real world’ task consist-

ing of tracking a moving light spot in the horizontal plane

[8], here a virtual tracking task in 3D space is displayed to

the patient. This allows a specific trajectory to be displayed

clearly, together with the required spot they must track, and

the provision of additional visual feedback indicating their

current error level. This is achieved using real-time software

which reads resolver data from the mechanical support via

a real-time control card and outputs the arm position and

reference using kinematic models of the human arm and

mechanical support systems. These are read by a custom

made application developed in C++ with DirectX interface

to render the 3D environment. In addition, the realtime

software simultaneously implements control schemes for the

FES using dynamic models of the combined arm structures.

A signal flow diagram is shown in Figure 3.

A monitor is provided for the physiotherapist and another

for the patient. The former displays a graphical user interface

(GUI) which allows the physiotherapist to customise the

parameters which define the task and controllers. Prior to

treatment, the physiotherapist assists the patient into the

mechanical support and places each surface electrode at a

position on the muscle which elicits the maximum appropri-

ate movement. The therapist then sets the FES amplitude,

before assisting the patient to extend their arm in several

directions in order to define their workspace (used in the

calculation of the references). Treatment consists of patients

undertaking 6 trials of a range of tracking tasks, using their

remaining voluntary control, with the additional assistance

of FES. Four tasks will be used at the beginning and end

of each treatment session without FES assistance applied, in

order to assess improvement in patient’s unassisted function.

The screen for patients displays a graphic of their arm in

real-time, together with the trajectory tracking task, and is

shown in Figure 4. The aim of the tracking task is for the

patient to follow a sphere which travels along the trajectory

at various speeds. The graphic of the patient’s hand changes

colour to indicate their current error level. Visual feedback

of performance is also given by an error percentage ‘score’

displayed after each set of trials. A graphic of the initial

arm position is displayed to ensure accurate resetting of the

system at the start of each trial.

III. ARM MODELLING AND CONTROL

The dynamic model of the system comprises the biome-

chanical description of the human arm, coupled with a repre-

sentation of the mechanical support. The human arm system

is time-varying due to changing physiological conditions

such as fatigue and spasticity, and includes the presence of

the patient’s residual voluntary effort. A block diagram of

the combined model and controller is shown in Figure 5.

A. Mechanical Support

Figure 6(a) shows the kinematic structure of the ex-

oskeleton mechanical support, where the joint variables

Θ = [θ1, θ2, θ3, θ4, θ5]T correspond to the measured joint

angles. Note that the parallelogram structure of the upperarm

Fig. 3. Signal flow diagram.
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Fig. 5. Block diagram of control scheme showing iterative learning and feedback controllers.

Fig. 4. 3D virtual reality environment for patients.

section results in θ3 = −θ′3. Applying Lagrangian analysis,

a dynamic model of the mechanical support is given by

Ba(Θ)Θ̈ + Ca(Θ, Θ̇)Θ̇ + Fa(Θ, Θ̇) + Ga(Θ) + Ka(Θ)

= −JT
a (Θ)ha (1)

where ha is a vector of externally applied force and torque,

Ba(·) and Ca(·) are 5-by-5 inertial and Corelis matrices

respectively. In addition, Ja(·) is the system Jacobian, and

Fa(·) and Ga(·) are friction and gravitational vectors. The

vector Ka(·) comprises the moments produced through

gravity compensation provided by each spring, which are

functions of θ3 and θ5 respectively, and hence Ka(·) takes

the form [0, 0, k3(θ3), 0, k5(θ5)]T .

B. Human Arm

The human arm kinematics are shown in Figure 6(b),

and since the arm is strapped to the support, its position

can also be described using the same variable set. However

to simplify the FES control scheme, it is desirable that

those axes about which electrical stimulation produces a

moment correspond with joint variables. Spasticity in stroke

patients typically produces a resistance to elbow extension

during reaching tasks, associated with overactivity of the

biceps, and a loss in activity of the triceps and anterior

deltoid (this difficulty in performing full elbow extension

has been verified experimentally during reaching tasks [12]).
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Fig. 6. Kinematic system relationships: (a) measured ArmeoSpring® vari-
ables, and (b) anthropomorphic variables.

These muscles have therefore been selected for stimulation.

It is first assumed that application of stimulation to the

triceps produces a moment about an axis orthogonal to both

the forearm and upperarm, and that FES to the anterior

deltoid produced a moment about an axis which is fixed

with respect to the shoulder. These anthropomorphically

motivated variables are given by Φ = [φ1, φ2, φ3, φ4, φ5]T ,

and are shown in Figure 6(b). The anterior deltoid axis is

specified by two constant rotation transformations that are

introduced into the human arm kinematic chain, appearing in

Figure 7(a). Following initial rotation of the base frame by

φ1, the frame is rotated along the z-axis by β and along the

x-axis by γ. Identification of the two parameters is described

in Section III-C.

The human arm dynamic model can be represented by

Bh(Φ)Φ̈ + Ch(Φ, Φ̇)Φ̇ + Fh(Φ, Φ̇) + Gh(Φ) = τ (2)

where τ comprises the moments produced through ap-

plication of FES, which are of the form g(u, Φ, Φ̇) =
[0, g2(φ2, φ̇2, u2), 0, 0, g5(φ5, φ̇5, u5)]T . Moreover u2(t) and

u5(t) are the electrical stimulation applied to the tri-

ceps and anterior deltoid muscles respectively, and u =
[0, u2, 0, 0, u5]T . From [13], each moment can be assumed
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to be of the form

gi(φi, φ̇i, ui(t)) = hi(ui, t)×Fm,i(φi, φ̇i) i ∈ {2, 5}
(3)

The term, hi(ui, t) is a Hammerstein structure incorporating

a static non-linearity, hIRC,i(ui), representing the isometric

recruitment curve, cascaded with linear activation dynamics,

hLAD,i(t). The term Fm,i(φi, φ̇i) models the multiplicative

effect of the joint angle and joint angular velocity on the

active torque developed by the muscle.

The rigid connection between structures means that within

the necessary joint ranges, there exists a unique bijective

transformation between these coordinate sets, given by Φ =
k(Θ). The combined model assumes the form

B(Φ)Φ̈ + C(Φ, Φ̇)Φ̇ + F (Φ, Φ̇) + G(Φ) + K(Φ)

= τ − JT (Φ)ha (4)

This model is used by the FES control system to produce

an input signal that results in accurate tracking of a reference

trajectory. Since assistive torque is applied about the φ2 and

φ5 axes only, the system is underactuated. When applied

during the treatment of patients, the controller assists track-

ing about φ2 and φ5 alone, and it is assumed that the patient

has sufficient control over the remaining axes to adequately

perform the task.

C. Model Identification

To deliver precise assistance, the FES controller requires a

dynamic model of the combined human arm and mechanical

support, and hence identification of all the parameters ap-

pearing in (4). These are identified in a series of tests, which,

due to variable electrode placement, spasticity, fatigue, envi-

ronmental and physiological conditions, must be performed

prior to each experimentation or treatment session.

The lengths l1, l2 are first recorded through direct mea-

surement, then the two parameters, β and γ, defining the

anterior deltoid axis are found by applying a 10-second ramp

FES input to the anterior deltoid and recording the resulting

movement of the patient’s elbow. With the assumption that

the spring support locally cancels the effect of gravity,

and that the movement about φ2 is sufficiently slow to

decouple the inertial and Coriolis matrices, such an input

only produces movement about the anterior deltoid axis.

A plane is therefore fitted to the resulting elbow positions,

which then yields β and γ. Figure 7(b) shows an example

of the fitted anterior deltoid axis.

A 6-axis force/torque sensor is attached to the underside

of the extreme link of the mechanical support to provide

the vector of externally applied forces and torques, ha. The

sensor is connected to a short handle with which the therapist

can apply force/torque to move the arm. Whilst the arm

is held at a fixed position using the handle, stimulation

excitation inputs are applied and the corresponding ha values

recorded. The algorithms developed in [13] are employed to

identify the isometric properties of each muscle, compris-

ing hi(ui, t). To elicit the remaining model parameters in

(4), the identification procedure of [14] has been applied.
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Fig. 7. Identification of anterior deltoid axis: (a) anterior deltoid axis
model, and (b) measurement of elbow during identification test.

This involves exciting the mechanical support and human

arm system using sufficiently rich kinematic trajectories,

achieved by the therapist manually moving the system using

the handle. Within (4), the term F (Φ, Φ̇) is represented in the

form of piecewise linear functions, as are the muscle multi-

plication functions Fm,i(φi, φ̇i) appearing in (3). Following

kinematic excitation, a linear-in-parameter representation of

(4) is used to derive the optimal set of parameters using least

squares data fitting.

D. FES Control Strategy

The control system structure shown in Figure 5 must

assist tracking performance of the supported human arm

system through control of the stimulation pulsewidth inputs

u2(t) and u5(t) which appear in the input vector u(t). The

controlled outputs are the components φ2(t) and φ5(t) of

the vector Φ(t) which must track corresponding components

φ∗
2(t) and φ∗

5(t) of the reference Φ∗(t). As described, the

remaining joint angles can either be assumed fixed and

removed from the system, or treated as a disturbance.

The tasks presented to patients during treatment consist

of repeated tracking movements for their affected arm, with

a rest period in between during which their arm is returned

to the starting position. This structure exactly matches the

iterative learning paradigm (see, for example, [15]) and it

will hence be applied to control the movement. ILC is a

methodology suitable for applications which repeatedly track

a fixed reference trajectory over a finite time interval, termed

a trial, with resetting to the same initial position between
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Fig. 8. Generated reference trajectories.

attempts. ILC modifies the control input using the tracking

error information from previous trials in order to achieve

improved performance for the current and subsequent trials.

ILC is often applied in combination with a standard feed-

back controller to ensure baseline tracking performance and

disturbance rejection and in this paper a Proportional plus

Integral plus Derivative (PID) controller is employed. Figure

5 shows the full control structure in which an ILC and a PID

feedback controller are connected in a parallel layout, where

the subscript k denotes the trial number. In this framework

voluntary effort of the patient can be treated as an iteration-

invariant disturbance and can hence be compensated for [14].

A robust ILC scheme can also deal with significant dynamic

changes and model inaccuracy. Here a simple phase-lead

ILC algorithm has been selected of the form

vk+1(t) = vk(t) + Lek(t + λ) (5)

where L is a scalar learning gain, and λ is the phase-lead

parameter. Full details are given in [16], including optimal

selection of λ. Since only φ2 and φ5 variables are controlled,

L is multiplied by the matrix diag{0, 1, 0, 0, 1}.

As stated previously, ILC algorithms require a fixed refer-

ence trajectory. Nine such trajectories have been generated

that correspond to lifting the upper arm and extending

the forearm over a period of 5 or 10 seconds. These are

individually selected for each patient by taking the farthest

points in their workspace and applying a 3rd order ramp

signal to result in a smooth reaching movement to these

points. By appropriately scaling each movement, nine tasks

of ranging difficultly have been produced, and are shown in

Figure 8. Note that variation in the joint angles φ1, φ3 and

φ4 is permissible since only φ2 and φ5 are controlled. These

9 tasks are based on clinical need and are easily adjusted by

the therapist through alteration of the patient’s workspace.

IV. EXPERIMENTAL RESULTS

Following ethical approval, the algorithms have been

tested during a preliminary study involving 11 unimpaired

participants and 5 stoke patients. The experiments are carried

out using sampling frequencies of 1000Hz and 40Hz for
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Fig. 9. The tracking performance without FES assistance.

capturing the signals and computation of control signals

respectively. The patient is first asked to complete 4 unas-

sisted tracking tasks (i.e. without any FES). Figure 9 shows

representative unassisted tracking results from one patient

who has started clinical trials. Figure 10 shows the patient’s

tracking performance with assistance from the system. The

oscillations observed can be removed through reduction of

the PID gains, which are chosen heuristically since it is ILC

which drives the tracking. The results confirm that accurate

tracking has been achieved for φ5 (elbow movement) and

reasonable improvement has been seen for the anterior del-

toid. This patient has a very weak anterior deltoid muscle, so

that lack of shoulder movement is inevitable, but is expected

to improve during treatment. Via the Hebbian Learning

effect, the assisted tracking achieved is also expected to

transfer to a reduction in impairments during treatment. Full

results are given in [17], which includes results using a

model-based ILC algorithm based on the Newton method,

where the input update is vk+1 = vk + g′(vk)−1ek where

g(·) is the linearised system model. Figure 11 shows mean

squared error plots of the patient’s performance in two

sessions using different reference trajectories. The results in-

dicate that the ILC performs well for patients with adequate

muscle activity.

V. CONCLUSION

A platform for 3D stroke rehabilitation has been devel-

oped, comprising an FES system to achieve precise control

of human arm movement in combination with a mechanical

support. The technology is designed to help stroke patients

train their upper limb muscles during functional tasks using

electrical stimulation to augment their remaining movement.

ILC algorithms have been applied to improve the perfor-

mance from trial to trial by precise updating of the FES

signals. The subsequent high level of performance max-

imises the potential for recovery via the Hebbian learning

rule. Experimental results show that significant improvement

can be achieved within a few trials. Clinical trials have

commenced using the system, in which 5 patients each

receive 18 treatment sessions of 1 hour duration.
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